Fu Saiji
讲师(高校)
Gender:
Female
Alma Mater:
中国科学院大学
Education Level:
研究生毕业
Degree:
博士学位
Status:
在职
School/Department:
经济管理学院
Discipline:
Management science and engineering *
E-Mail:
fusaiji@bupt.edu.cn
Click:
Times
Opening Time:..
The Last Update Time:..
Paper Publications
-
[1] .Hou Z, Tang J, Li Y, Fu S, et al. MVQS: Robust multi-view instance-level cost-sensitive learning method for imbalanced data classification[J]. Information Sciences, 2024: 120467. (SCI,中科院一区TOP)
-
[2] .Tang J, Yi Q, Fu S*, et al. Incomplete multi-view learning: Review, analysis, and prospects[J]. Applied Soft Computing, 2024: 111278.(SCI, 中科院一区TOP)
-
[3] .Liu D, Fu S, Tian Y, et al. Universum driven cost-sensitive learning method with asymmetric loss function[J]. Engineering Applications of Artificial Intelligence, 2024, 131: 107849.(SCI, 中科院二区TOP)
-
[4] .Fu S, Wang X, Tang J, et al. Generalized robust loss functions for machine learning[J]. Neural Networks, 2024, 171: 200-214.(SCI, 中科院一区TOP)
-
[5] .Fu S, Wang X, Tian Y, et al. Coarse-grained privileged learning for classification[J]. Information Processing & Management, 2023, 60(6): 103506. (SCI, 中科院一区TOP)
-
[6] .Fu S, Su D, Li S, et al. Linear-exponential loss incorporated deep learning for imbalanced classification[J]. ISA Transactions, 2023, 140: 279-292. (SCI, 中科院二区TOP)
-
[7] .Tang J, Hou Z, Yu X, Tian Y, Fu S*. Multi-view cost-sensitive kernel learning for imbalanced classification problem[J].Neurocomputing, 2023, 552: 126562.(SCI, 中科院二区TOP)
-
[8] .Fu S, Tian Y, Tang J. Iterative privileged learning for multi-view classification[C]// International Conference on Information Technology and Quantitative Management, 2023. (EI)
-
[9] .Fu S, Tian Y, Tang L. Robust regression under the general framework of bounded loss functions[J]. European Journal of Operational Research, 2023, 310(3): 1325-1339. (ABS 4)
-
[10] .Tian Y, Zhao X, Fu S*. Kernel methods with asymmetric and robust loss function[J]. Expert Systems with Applications, 2023, 213: 119236.(SCI, 中科院一区TOP)
Copyright Convention Beijing Post and Telecommunications University Address: 1000876 Beijing ICP, 05064445 Beijing Public Website 1104 02430070