Quality-Diversity Summarization with Unsupervised Autoencoders
点击次数:
所属单位:
北京邮电大学
教研室:
智能科学与技术中心
发表刊物:
Proceedings of the 28th International Conference on Artificial Neural Networks, LNCS 11730
关键字:
Summarization, DPPs, Autoencoder
摘要:
This paper introduces a novel perspective on unlabeled data driven technology for extractive summarization. Because unsupervised autoencoders, combined with neural network language models, help to capture deep semantic features for sentence quality, we propose to integrate autoencoders with sampling method based on Determinantal point processes (DPPs) [1] to extract diverse sentences with high qualities, and generate brief summaries. The unique fusion of unsupervised autoencoders and DPPs sampling has never been adopted before.
论文类型:
论文集
第一作者:
李蕾
合写作者:
Natalia Vanetik,Marina Litvak
通讯作者:
黄祖莹
学科门类:
工学
一级学科:
计算机科学与技术*
文献类型:
C
页面范围:
293–299
字数:
2300
是否译文:
否
发表时间:
2019-09-17