Referred paper and preprints
Yiyan Yao and Xin-long Luo, Improving vertical positioning accuracy with the weighted multinomial logistic regression classifier
发布时间:2020-08-06  点击次数:

所属单位:人工智能学院

教研室:智能信息工程系

发表刊物:SN Applied Sciences

刊物所在地:Switzerland AG

项目来源:国家自然基金,华为基金

关键字:vertical positioning,data correction, parameter estimation,multinomial logistic regression,SVM

摘要:In this paper, a method of improving vertical positioning accuracy with the Global Positioning System (GPS) information and barometric pressure values is proposed. First, we clear null values for the raw data collected in various environments, and use the 3$\sigma$-rule to identify outliers. Secondly, the Weighted Multinomial Logistic Regression (WMLR) classifier is trained to obtain the predicted altitude of outliers. The numerical results show that the vertical positioning accuracy is improved from 5.9 meters (the MLR method), 5.4 meters (the SVM method) to 5 . meters (the WMLR).

论文类型:期刊论文

第一作者:姚一炎

通讯作者:罗新龙

论文编号:1445

学科门类:工学

一级学科:计算机科学与技术*

文献类型:J

卷号:2

期号:8

页面范围:1-8

ISSN号:2523-3971

是否译文:

发表时间:2020-08-01

发布期刊链接:http://doi.org/10.1007/s42452-020-03240-w