左兴权(教授)
+
- 博士生导师 硕士生导师
- 教师英文名称:Zuo Xingquan
- 电子邮箱:
- 所在单位:计算机学院(国家示范性软件学院)
- 学历:研究生毕业
- 办公地点:科研楼203室
- 性别:男
- 联系方式:010-62281833
- 学位:博士学位
- 在职信息:在职
- 毕业院校:哈尔滨工业大学
- 学科:计算机科学与技术*
- 所属院系:计算机学院(国家示范性软件学院)
- 招生学科: 计算机科学与技术*
- 邮编:
- 通讯/办公地址:
- 办公室电话:
- 邮箱:
访问量:
开通时间:..
最后更新时间:..
- Victoria Huang, Gang Chen, Xingquan Zuo, et al., Request dispatching over distributed SDN control plane: a multi-agent approach, IEEE Transactions on Cybernetics, 2024, 54(5): 3211-3224.
- Yahong Liu, Xingquan Zuo*, Xiaodong Li, et al., A genetic algorithm with trip-adjustment strategy for multi-depot electric bus scheduling problem. Engineering Optimization, 2024. 56(8): 1200-1219.
- Binglin Wu, Xingquan Zuo*, Gang Chen, et al., Multi-agent deep reinforcement learning based real-time planning approach for responsive customized bus routes, Computers & Industrial Engineering, 2024, 188: 109840.
- Xinyue Yang, Hai Huang, Xingquan Zuo, Randomized mask perturbation based explainable method of graph neural networks, The 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Taipei, 2024, pp. 17-29.
- 李瑶, 王春露, 左兴权*, 等. 基于代理模型的XAI可解释性量化评估方法, 控制与决策, 2024, 39(2): 680-688.
- Zhishuo Liu, Xingquan Zuo, et al. Electric vehicle routing problem with variable vehicle speed and soft time windows for perishable product delivery, IEEE Transactions on Intelligent Transportation System, 2023, 24(6): 6178-6190.
- Yingzhuo Liu, Xingquan Zuo*, Guanquan Ai, et al., A reinforcement learning-based approach for online bus scheduling, Knowledge-based System, 2023, 271: 110584..[J]
- Yahong Liu, Xingquan Zuo*, Guanqun Ai, et al., A construction-and-repair based method for vehicle scheduling of bus line with branch lines, Computers & Industrial Engineering, 2023, 178: 109103.
- Guanqun Ai, Xingquan Zuo*, Gang Chen, Binglin Wu. Deep reinforcement learning based dynamic optimization of bus timetable, Applied Soft Computing, 2022, 131: 109752.
- Yun Wang, Xingquan Zuo, Zhiqiang Wu, et al., Variable neighborhood search based multiobjective ACO-list scheduling for cloud workflows, Journal of Supercomputing, 2022, 78: 18856–18886.