![]() |
Personal Information:
More >>Supervisor of Doctorate Candidates Supervisor of Master's Candidates
Honors and Titles:
2023 elected:北京市青年托举人才
2014 elected:ACP"Best Student Paper"一等奖
Personal Profile
北京邮电大学研究员,博士生导师。IEEE senior member,北京通信学会青年委员。2008年于南开大学获学士学位,之后赴日本留学,2014年获日本东北大学工学博士学位,师从通信界著名物理学家中沢正隆(Nakazawa, Masataka)教授。2014年~2021年作为研究员在日本东北大学从事研究工作,其间加入日本量子通信先驱者枝松圭一(Edamatsu,Keiichi)教授课题组。2022年至今在北京邮电大学工作。十年来一直致力于超高速光通信系统,高精度半导体激光器相位同步技术和量子集成芯片等领域的研究工作,目前的主要研究方向包括基于深度学习/强化学习的新一代光通信光网络系统、低成本量子通信系统和无人机系统,在相关领域取得了一些世界前沿的创新性研究成果。在国际和日本各类期刊上发表学术论文40余篇,主持B类纵向国家级项目1项,参与了十余项包括国家重点研发和日本总务省在内的国家级重大项目,部分成果面向东京奥运会等重要应用场景。入选2023~2025年北京市青年人才托举工程。
主要发表论文有:
[33] Mingrui Zhang; Yajie Li; Shuang Wei; Haokun Song; Yixin Wang,“Quantum Noise Stream Cipher Scheme Based on 3-Channel-QAM With 3D Mapping and DFTs-OFDM” IEEE Photonics Technology Letters ( Volume: 37, Issue: 3, 01 February 2025)
[32] Gao Y, Wang T, Wang Y, et al. "Intensity correlation distribution in gain-switched semiconductor laser for quantum key distribution"[J]. Journal of Semiconductors, 2025, 46: -1-6.
[31] H. Wang, Y. Wang, X. Zhou, F. Lin, X. Wang, and J. Zhang, "ACO-RMSA: Improving QoT-aware Resource Allocation in Elastic Optical Networks via Adaptive Ant Colony Optimization," 2025 30th OptoElectronics and Communications Conference (OECC) and 2025 International Conference on Photonics in Switching and Computing (PSC), Sapporo, Japan, 2025.
[30] Yanwen Zhu, Yuang Li, Xu Zhang, Yi Huang, Huibin Zhang, Yixin Wang* andJie Zhang,"End-to-End Amplitude Noise based Classical Key Generation and Distribution with FPGA implemented Post-Processing,"2025 30th OptoElectronics and Communications Conference (OECC) and 2025 International Conference on Photonics in Switching and Computing (PSC), Sapporo, Japan, 2025.
[29] Yanwen Zhu, Yuang Li, Xu Zhang, Yi Huang, Huibin Zhang, Yixin Wang* and Jie Zhang, "Experimental Verification of Physical Layer Key Generation and Distribution Based on End-to-End Error Vector Phase."2025 30th OptoElectronics and Communications Conference (OECC) and 2025 International Conference on Photonics in Switching and Computing (PSC), Sapporo, Japan, 2025.
[28] Zihao Zhang, Yanwen Zhu, Xun Zhou, Xiaogang Wang, Yixin Wang* and Jie Zhang ,"End-to-End Modeling of FSO Communication Systems with QNSC Encryption under Different Turbulence Conditions."ICOCN 2025.
[27] Manlin Guo, Linjie Xu, Xiaogang Wang, Yanwen Zhu, Zirui Ding, Yixin Wang* and Jie Zhang ,"Highly Efficient Information Reconciliation Based on Correlation Thresholding Driven by Experimental Data in Classical Key Distribution" ICOCN 2025.
[26] Wenxu Zhao, Tao Wang, Xun Zhou, Yixin Wang* and Jie Zhang,"An Intensity-Stable Pulse Source Based on Optical Injection for High-Speed Quantum Key Distribution."ICOCN 2025.
[25] Gao Y, Wang T, Wang Y, et al. Inter-pulse intensity correlation in gain-switched semiconductor laser for quantum key distribution[C]//CLEO: Fundamental Science. Optica Publishing Group, 2024: FM3K. 3.
[24] Wang T, Wang Y*, Zhu Y, et al. Assessing the Impact of Patterning Effect on Quantum Key Distribution[C]//2024 Optical Fiber Communications Conference and Exhibition (OFC). IEEE, 2024: 1-3
[23] Ziyang Wang, Yixin Wang* andJie Zhang, "Compensation of coherent optical communication systems using PSO-optimized SVM," Proc. SPIE 13502, AOPC 2024: AI in Optics and Photonics, 135020L (13 December 2024).
[22] Kongni Zhu,Shuang Wei, Yuang Li,Yajie Li, Yixin Wang et al., "Quantum Noise Stream Cipher Scheme With Triangular Quadrature Amplitude Modulation and Secret Probabilistic Shaping," in Journal of Lightwave Technology, vol. 42, no. 5, pp. 1423-1433, 1 March1, 2024,
[21] "Single-channel 200 Gbit/s, 10 Gsymbol/s-1024 QAM injection-locked coherent transmission over 160 km with a pilot-assisted adaptive equalizer," Opt. Express, 2018, vol. 26, no. 13, pp. 17015-17024,Y. Wang*, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa.
[20] “320 Gbit/s, 20 Gsymbol/s 256 QAM coherent transmission over 160 km by using injection-locked local oscillator,” Opt. Express, 2016, vol. 24, no. 19, pp. 22088-22096,Y. Wang*, K. Kasai, M. Yoshida and M. Nakazawa.
[19] “120 Gbit/s injection-locked homodyne coherent transmission of polarization-multiplexed 64 QAM signals over 150 km,” Opt. Express, 2014, vol. 22, no. 25, pp. 31310-31316,Y. Wang*, K. Kasai, M. Yoshida, and M. Nakazawa.
[18] “60 Gbit/s, 64 QAM LD-based injection-locked coherent heterodyne transmission over 160 km with a spectral efficiency of 9 bit/s/Hz,” IEICE Electron. Express, 2014, vol. 11, no. 17, 20140601,Y. Wang*, K. Kasai, M. Yoshida, and M. Nakazawa.
[17] “120 Gbit/s, polarization-multiplexed 10 Gsymbol/s, 64 QAM coherent transmission over 150 km using an optical voltage-controlled oscillator,” Opt. Express, 2013, vol. 21, no. 23, pp. 28290-28296,Y. Wang*, K. Kasai, T. Omiya, and M. Nakazawa.
[16] “Polarization-multiplexed, 10 Gsymbol/s, 64 QAM coherent transmission over 150 km with OPLL-based homodyne detection employing narrow linewidth LDs,” IEICE Electron. Express, 2011, vol. 8, no. 17, pp. 1444-1449,Y. Wang*, K. Kasai, and M. Nakazawa.
[15] “80 Gbit/s, 256 QAM coherent transmission over 150 km with an injection-locked homodyne receiver,” Opt. Express, 2015, vol. 23, no. 22, pp. 29174-29183,K. Kasai*, Y. Wang, S. Beppu, M. Yoshida, and M. Nakazawa.
[14] “448 Gbit/s, 32 Gbaud 128 QAM coherent transmission over 150 km with a potential spectral efficiency of 10.7 bit/s/Hz,” Opt. Express, 2015, vol. 23, no. 22, pp. 28423-28429,K. Kasai*, Y. Wang, D. O. Otuya, M. Yoshida, and M. Nakazawa.
[13] “First demonstration of digital coherent transmission in a deployed ROADM network with a 120 Gbit/s polarization-multiplexed 64 QAM signal,” IEICE Electron. Express, 2015, vol. 12, no. 23, 20150884,T. Hirooka*, K. Kasai, Y. Wang, M. Nakazawa, M. Shiraiwa, Y. Awaji, and N. Wada.
[12] “120 Gbit/s, 64 QAM coherent transmission employing an optical voltage controlled oscillator,” European Conference on Optical Communication (ECOC), 2013, Mo.4.C.2, Y. Wang*, K. Kasai, T. Omiya, and M. Nakazawa.
[11] “140 Gbit/s, 128 QAM LD-based coherent transmission over 150 km with an injection-locked homodyne detection technique,” Asia Communication and Photonics Conference (APC), 2014, ATh1E.3, Y. Wang*, S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa.
[10] “Single-Carrier 216 Gbit/s, 12 Gsymbol/s 512 QAM Coherent Transmission over 160 km with Injection-locked Homodyne Detection,” Optical Fiber Communication Conference (OFC), 2017, Tu2E.1, Y. Wang*, K. Kasai, M. Yoshida and M. Nakazawa.
[9] “320 Gbit/s, 256 QAM LD-based Coherent Transmission over 160 km with an Injection-locked Homodyne Detection Technique,” Opto-Electronics and Communication Conference (OECC), 2016, ThB3, Y. Wang*, K. Kasai, M. Yoshida and M. Nakazawa.
[8] “A 6 kHz linewidth, injection-locked LD using a master erbium fiber laser,” Opto-Electronics and Communication Conference (OECC), 2014, No. 871, Y. Wang*, K. Kasai, M. Yoshida, and M. Nakazawa.
[7] “80 Gbit/s/ch, 256 QAM Digital Coherent Optical Transmission System with Injection-Locking for Next Generation Mobile Fronthaul Network,” European Conference on Optical Communication (ECOC), 2017, Th.1.B.5, K. Kasai*, Y. Wang, M. Yoshida, T. Hirooka, K. Iwatsuki, and M. Nakazawa.[16] “An LD-based ultra-low phase noise OPLL circuit using an optical voltage-controlled oscillator,” Optical Fiber Communication Conference (OFC), 2013, OW3D.2, K. Kasai*, Y. Wang, and M. Nakazawa.
[6] “256 QAM (polarization-multiplexed, 5 Gsymbol/s) coherent transmission with an injection-locked homodyne detection technique,” Optical Fiber Communication Conference (OFC), 2015, W1E.4, K. Kasai*, S. Beppu, Y. Wang, and M. Nakazawa.
[5]"Injection-locked Homodyne Detection for Higher-order QAM Transmission," Optical Fiber Communication Conference (OFC), 2018, M4G.1, K. Kasai*, Y. Wang, M. Yoshida, T. Hirooka, and M. Nakazawa.
[4] "200 Gbit/s, 10 Gsymbol/s-1024 QAM Injection Locked Coherent Transmission over 160 km with a Pilot-Assisted Adaptive Equalizer," Opto-Electronics and Communication Conference (OECC), 2018, 4B1-4, K. Kasai*, Y. Wang, S. Okamoto, M. Yoshida, and M. Nakazawa.
[3] "Hydrogen Annealing Effect on Silicon Optical Waveguide," The 4th International Forum on Quantum Metrology and Sensing (IFQMS), Y. Wang*, K. Haji, S. Abe, T. Inagaki, Y. Kanamori, K. Edamatsu, H. Yamada and N. Matsuda.
[2] “320 Gbit/s, 256 QAM Coherent Optical Transmission over 160 km with an LD-based Injection-locked Homodyne Receiver,” Proceedings of the 2016 IEICE General Conference, 2016, B-10-52, Y. Wang*, K. Kasai, M.Yoshida and M. Nakazawa.
[1] “80 Gbit/s, 256 QAM Coherent Optical Transmission over 150 km with an LD-based Injection-locked Homodyne Receiver,” Proceedings of the 2015 IEICE Society Conference, 2015, B-10-43, Y. Wang*, K. Kasai, S. Beppu and M. Nakazawa.